

Mobility Research & Development

Dr. Paramsothy Jayakumar, STE, Analytics

Tank Automotive Research, Development and Engineering Center
Research, Development and Engineering Command

Army Materiel Command

United States Army

2016

Off-Road Mobility Challenges

Empirical Approach: NATO Reference Mobility Model

NATO Reference Mobility Model (NRMM)

- Dr. M. G. Bekker of TARDEC is the "Father of Terrain-Vehicle Systems"
- NRMM was developed in 1960-70 by TARDEC and ERDC
- Accepted as a NATO standard in 1977-78
- Methodology relied on empirical relationships and not physics-based
- Does not extrapolate to contemporary vehicle designs and technologies
- Does **not** benefit from advances in simulation and computational capabilities

Building Blocks: Scaled Experiments

Pressure – Sinkage Test

Direct Shear Test

Single Wheel Test

Simulations

Particle Image Velocimetry

Validation of Theory: Scale Test Results

Pressure – Sinkage Test

Direct Shear Test

Single Wheel Test

Full-Scale Demonstration: Physics-Based Mobility M&S

Computational Burden

• Hardware: Cray XC40 32 cores

Software: IVRESS; Contact method: DEM-P

Run time: 14,000x slower than real time

Model particle dia / Physical: 30 mm / 0.002 mm

= 15,000x bigger than real size

Goal: NextGen NATO Reference Mobility Model

Challenging Nature of Terramechanics

Heterogeneity

Scalability Dynamics Multi-Scale A V₃ V₅ V₂ V₂ V₂ V₂ Multi-Scale

Performance Challenges: Algorithms and Hardware

Algorithm Cost vs. Problem Size

Compute Cost: CPU vs. GPU

Massive Parallelization

Quantum Computing

Physics of Terramechanics and Quantum Computing

$$\dot{\mathbf{q}} = \mathbf{L}(\mathbf{q})\mathbf{v}$$

$$\mathbf{M}(\mathbf{q})\dot{\mathbf{v}} = \mathbf{f}(t, \mathbf{q}, \mathbf{v}) - \mathbf{g}_{\mathbf{q}}^{\mathrm{T}}(\mathbf{q}, t)\lambda + \sum_{i \in \mathcal{A}(\mathbf{q}, \delta)} \underbrace{(\widehat{\gamma}_{i,n} \mathbf{D}_{i,n} + \widehat{\gamma}_{i,u} \mathbf{D}_{i,u} + \widehat{\gamma}_{i,w} \mathbf{D}_{i,w})}_{\text{Frictional Contact Force}}$$

$$\mathbf{0} = \mathbf{g}(\mathbf{q}, t)$$

$$\mathbf{0} = \mathbf{g}(\mathbf{q}, t)$$

$$i \in \mathcal{A}(\mathbf{q}(t), \delta)$$
 :

$$0 \le \Phi_i(\mathbf{q}) \quad \perp \quad \widehat{\gamma}_{i,n} \ge 0$$

$$i \in \mathcal{A}(\mathbf{q}(t), \delta)$$
 :
$$\left\{ egin{array}{ll} 0 \leq \Phi_i(\mathbf{q}) & \perp & \widehat{\gamma}_{i,n} \geq 0 \end{array} \right. \ \, & \text{Complementarity Condition} \\ \left(\widehat{\gamma}_{i,u}, \widehat{\gamma}_{i,w} \right) & = & \underset{\sqrt{(\bar{\gamma}_u^i)^2 + (\bar{\gamma}_w^i)^2} \leq \mu_i \widehat{\gamma}_{i,n}}{\operatorname{argmin}} \ \, & \mathbf{v}^T \cdot \left(\bar{\gamma}_u^i \, \mathbf{D}_{i,u} + \bar{\gamma}_w^i \, \mathbf{D}_{i,w} \right) \end{array} \right.$$

Friction Dissipation Energy

Mobility Problem reduces to:

Quadratic Constrained Continuous Optimization Problem

Note that Quantum Computer can solve:

Quadratic Unconstrained Binary Optimization Problem